160k views
5 votes
What is the distance between A(-8, 4) and B(4, -1)?

User Cduruk
by
4.6k points

2 Answers

5 votes

___________________________________

Problem:

  • What is the distance between A(-8,4) and B(4,-1)

Given:


\quad\quad\quad\quad\tt{A.) x\tiny{1}\small{=-8}, y\tiny{1}\small{=4}}


\quad\quad\quad\quad\tt{B.) x\tiny{2}\small{=4}, y\tiny{2}\small{=-1}}

Formula for distance (d):


\quad\quad\quad\quad\tt{d = \sqrt{(x \tiny{2} \small{ - x \tiny{1} \small {)}^(2) + (y \tiny{2} \small{ - y \tiny{1} \small{)}^(2) } }}}

Solution:


\quad\quad\quad\quad\tt{d = \sqrt{(4 - \small{ (- 8}{))}^(2) + ( \small{- 1)}\small{ - {4)}}^(2) }}


\quad\quad\quad\quad\tt{d = \sqrt{ ( {12)}^(2) + {( -5)}^(2) }}


\quad\quad\quad\quad\tt{d = \sqrt{ {144} + {25}}}


\quad\quad\quad\quad\tt{d = √( 169)}


\quad\quad\quad\quad\tt{d = 13}

So the final answer is:


\quad\quad\quad\quad\boxed{\boxed{\tt{\color{magenta}d = 13}}}

___________________________________

#CarryOnLearning

✍︎ C.Rose❀

What is the distance between A(-8, 4) and B(4, -1)?-example-1
User Maressyl
by
5.0k points
6 votes

Answer:

The distance between A(-8, 4) and B(4, -1) is 13 units.

Explanation:

To find the distance between any two points, we can use the distance formula given by:


\displaystyle d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2

We have the two points A(-8, 4) and B(4, -1). Let A(-8, 4) be (x₁, y₁) and let B(4, -1) be (x₂, y₂). Substitute:


d=√((4-(-8))^2+(-1-4)^2)

Evaluate:


d=√((12)^2+(-5)^2)

So:


d=√(144+25)=√(169)=13\text{ units}

The distance between A(-8, 4) and B(4, -1) is 13 units.

User PavelGP
by
5.3k points