Answer:
The distance between A(-8, 4) and B(4, -1) is 13 units.
Explanation:
To find the distance between any two points, we can use the distance formula given by:
![\displaystyle d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2](https://img.qammunity.org/2022/formulas/mathematics/college/aa0zioc1qt6bodqeilr38gc9nksbj28545.png)
We have the two points A(-8, 4) and B(4, -1). Let A(-8, 4) be (x₁, y₁) and let B(4, -1) be (x₂, y₂). Substitute:
![d=√((4-(-8))^2+(-1-4)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/7zwi14csulh353g74yor6fdv8t4glcmict.png)
Evaluate:
![d=√((12)^2+(-5)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/bs3k0jp7i9fy3q0tzbq80zaa8o3oavvq2l.png)
So:
![d=√(144+25)=√(169)=13\text{ units}](https://img.qammunity.org/2022/formulas/mathematics/college/z94k58jy14kn5mmzpti4v0jetfl3yub8yb.png)
The distance between A(-8, 4) and B(4, -1) is 13 units.