Answer:
![Rate = 6.7726](https://img.qammunity.org/2022/formulas/mathematics/college/7u0aru3wrea3k29h8aijmw15ktcz5xj01o.png)
Explanation:
Given
at
![x =2](https://img.qammunity.org/2022/formulas/history/college/ngofd42vdtopntwbbozgw0kmqgnuolcmgd.png)
Required
The instantaneous rate of change
We have:
![f(x) = x^x](https://img.qammunity.org/2022/formulas/mathematics/college/fed2av0qhvrxwajt2h0ngm3e6ocsfd4ukl.png)
The instantaneous rate of change is:
![\lim_(h \to 0) (f(a + h) -f(a))/(h)](https://img.qammunity.org/2022/formulas/mathematics/college/e72slhx1vlprekuhyt4ln5vwi1r7lq7hp8.png)
implies that:
![a = 2](https://img.qammunity.org/2022/formulas/mathematics/college/u1p8x5osrr4mrrrb3bb5o0srahqg4ke3yv.png)
So, we have:
![(f(a + h) -f(a))/(h) = (f(2 + 0.01) -f(2))/(0.01) = (f(2.01) -f(2))/(0.01) = (2.01^(2.01) - 2^2)/(0.01) = 6.840403](https://img.qammunity.org/2022/formulas/mathematics/college/fgkpsmnvjlnntb7k7htbc1cm0ts6yglg0q.png)
Keep reducing h but set a constant at 2
![(f(a + h) -f(a))/(h) = (f(2 + 0.001) -f(2))/(0.001) = (f(2.001) -f(2))/(0.001) = (2.001^(2.001) - 2^2)/(0.001) = 6.779327](https://img.qammunity.org/2022/formulas/mathematics/college/2xwdr4kknygnqki58rc2pztcbzkbhvwgfm.png)
![(f(a + h) -f(a))/(h) = (f(2 + 0.0001) -f(2))/(0.0001) = (f(2.0001) -f(2))/(0.0001) = (2.0001^(2.0001) - 2^2)/(0.0001) = 6.773262](https://img.qammunity.org/2022/formulas/mathematics/college/qi90y8zylw34rbv1gbf4j7vqdxs9fncfwp.png)
![h = 0.00001](https://img.qammunity.org/2022/formulas/mathematics/college/oejjsqd3llewp5y50yhb773wsupxqkk86g.png)
![(f(a + h) -f(a))/(h) = (f(2 + 0.00001) -f(2))/(0.00001) = (f(2.00001) -f(2))/(0.00001) = (2.00001^(2.00001) - 2^2)/(0.00001) = 6.772656](https://img.qammunity.org/2022/formulas/mathematics/college/4a2zci0ch41xmenu7nf1k7r7w2afwrnhik.png)
![h = 0.000001](https://img.qammunity.org/2022/formulas/mathematics/college/o4h2hi5b1g3habv54e5vjm82mqko63vs8j.png)
![(f(a + h) -f(a))/(h) = (f(2 + 0.000001) -f(2))/(0.000001) = (f(2.000001) -f(2))/(0.000001) = (2.000001^(2.000001) - 2^2)/(0.000001) = 6.772595](https://img.qammunity.org/2022/formulas/mathematics/college/rl785q4ij6ue16aqz6fhmtdssvf7jps3a3.png)
![h = 0.0000001](https://img.qammunity.org/2022/formulas/mathematics/college/if7eriqvukeermf061y1foas007f0m2l50.png)
![(f(a + h) -f(a))/(h) = (f(2 + 0.0000001) -f(2))/(0.0000001) = (f(2.0000001) -f(2))/(0.0000001) = (2.0000001^(2.0000001) - 2^2)/(0.0000001) = 6.772589](https://img.qammunity.org/2022/formulas/mathematics/college/n6pnvnnq2uvsrlqho6q7ah7aob2b493lqp.png)
![h = 0.00000001](https://img.qammunity.org/2022/formulas/mathematics/college/osp3lb8tn9ain44mfsjkqj870hg9pdcjpj.png)
![(f(a + h) -f(a))/(h) = (f(2 + 0.00000001) -f(2))/(0.00000001) = (f(2.00000001) -f(2))/(0.00000001) = (2.00000001^(2.00000001) - 2^2)/(0.00000001) = 6.772589](https://img.qammunity.org/2022/formulas/mathematics/college/gaw5izr7ckrxblrnb0bv93mpavvf51r5y3.png)
Notice that:
for
and
![h = 0.0000001](https://img.qammunity.org/2022/formulas/mathematics/college/if7eriqvukeermf061y1foas007f0m2l50.png)
Hence, the instantaneous rate of change is:
![Rate = 6.772589](https://img.qammunity.org/2022/formulas/mathematics/college/nesutspvybl29qqq250c54cfombokqcyp6.png)
---- approximated