23.2k views
4 votes
Use the formula for instantaneous rate of change, approximating the limit by using smaller and smaller values of hh , to find the instantaneous rate of change for each function at the given value.

f(x)=x^{x} at x=2

User Virushan
by
5.2k points

1 Answer

3 votes

Answer:


Rate = 6.7726

Explanation:

Given


f(x) = x^x at
x =2

Required

The instantaneous rate of change

We have:


f(x) = x^x

The instantaneous rate of change is:


\lim_(h \to 0) (f(a + h) -f(a))/(h)


x =2 implies that:
a = 2

So, we have:


a = 2
h = 0.01


(f(a + h) -f(a))/(h) = (f(2 + 0.01) -f(2))/(0.01) = (f(2.01) -f(2))/(0.01) = (2.01^(2.01) - 2^2)/(0.01) = 6.840403

Keep reducing h but set a constant at 2


h = 0.001


(f(a + h) -f(a))/(h) = (f(2 + 0.001) -f(2))/(0.001) = (f(2.001) -f(2))/(0.001) = (2.001^(2.001) - 2^2)/(0.001) = 6.779327


h = 0.0001


(f(a + h) -f(a))/(h) = (f(2 + 0.0001) -f(2))/(0.0001) = (f(2.0001) -f(2))/(0.0001) = (2.0001^(2.0001) - 2^2)/(0.0001) = 6.773262


h = 0.00001


(f(a + h) -f(a))/(h) = (f(2 + 0.00001) -f(2))/(0.00001) = (f(2.00001) -f(2))/(0.00001) = (2.00001^(2.00001) - 2^2)/(0.00001) = 6.772656


h = 0.000001


(f(a + h) -f(a))/(h) = (f(2 + 0.000001) -f(2))/(0.000001) = (f(2.000001) -f(2))/(0.000001) = (2.000001^(2.000001) - 2^2)/(0.000001) = 6.772595


h = 0.0000001


(f(a + h) -f(a))/(h) = (f(2 + 0.0000001) -f(2))/(0.0000001) = (f(2.0000001) -f(2))/(0.0000001) = (2.0000001^(2.0000001) - 2^2)/(0.0000001) = 6.772589


h = 0.00000001


(f(a + h) -f(a))/(h) = (f(2 + 0.00000001) -f(2))/(0.00000001) = (f(2.00000001) -f(2))/(0.00000001) = (2.00000001^(2.00000001) - 2^2)/(0.00000001) = 6.772589

Notice that:


(f(a + h) -f(a))/(h) = 6.772589 for
h = 0.00000001 and
h = 0.0000001

Hence, the instantaneous rate of change is:


Rate = 6.772589


Rate = 6.7726 ---- approximated

User Manette
by
6.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.