141k views
3 votes
Hey what the answer
all the formulas of exponents


User Ceceilia
by
4.4k points

2 Answers

1 vote

Answer:

see below

Explanation:

all formulas of exponent given by:


\displaystyle {x}^(1) = x \stackrel{ \rm example}{ \iff} 2^(1) = 2


\displaystyle{x}^(0) = 1\stackrel{ \rm example}{ \iff} 2^(0) = 1


\rm \displaystyle {x}^(m) \cdot { x }^(n) = {x}^(m + n) \stackrel{ \rm example}{ \iff} x^(1 ) \cdot {x}^(2) = x^(1 + 2 ) = {x}^(3)


\displaystyle \sqrt[n]{{x} }= x^(1/n) \stackrel{ \rm example}{ \iff} \sqrt[3]{x} = x^(1/3)


\rm \displaystyle \frac{{x}^(m) }{ { x }^(n)} = {x}^(m - n) \stackrel{ \rm example}{ \iff} \frac{x^(3) }{ {x}^(1) } = x^(3 - 1) = {x}^(2)


\rm \displaystyle ({x}^(m) {)}^(n) = {x}^(m n) \stackrel{ \rm example}{ \iff} (x^(1 ) {)}^(2) = x^( 2 )


\rm \displaystyle ({x}^(m) {y}^(m) {)}^(n) = {x}^(m n) {y}^(mn) \stackrel{ \rm example}{ \iff} (x^(1 ) { {y}^(1) )}^(2) = x^( 2 ) {y}^(2)


\rm \displaystyle \left(\frac{{x}^{} }{ { y }^{}} \right) ^(m) = \frac{{x}^(m) }{ { y }^(n) } ^{} \stackrel{ \rm example}{ \iff} = \left(\frac{ {x}^(2) }{ {y}^(2) } \right)^(2) = \frac{ {x}^(4) }{ {y}^(4) }


\displaystyle {x}^( - n) = \frac{1}{ {x}^(n) } \stackrel{ \rm example}{ \iff} x^( - 2) = \frac{1}{ {x}^(2) }

Hey what the answer all the formulas of exponents ​-example-1
User Swatantra Kumar
by
5.0k points
4 votes

Answer:

I hope the above picture help you mate

have a great day

I did it in white board so that I can explain better.i hope you understand if u have any problem in understanding be sure to reach out

#liliflim

Hey what the answer all the formulas of exponents ​-example-1
User Gilthans
by
5.0k points