100k views
4 votes

((csc x+1)(csc x-1))/(csc^2x)\\

cscθ·cos^2θ+sinθ= cscθ

User Slashnick
by
7.6k points

1 Answer

7 votes

Explanation:


(( \csc x+1)( \csc x-1))/( \csc ^2x) = \frac{ { \csc }^(2) x - 1}{ \csc^(2) x} \\ = 1 - \sin^(2) x = \cos^(2) x \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:

b. Since csc theta = 1/sin theta, we can multiply both sides by sin theta and you will end up with


\cos^(2) \theta + \sin^(2) \theta = 1

which is an identity.

User Olatokunbo
by
7.3k points