13.7k views
4 votes
The reaction of iron (III) oxide with carbon monoxide produces iron and carbon dioxide.

Fe,O3(s) + 3CO(g) - 2Fe(s) + 3C0 (9)
If you have 39.5g of Fe2O3, how many grams of CO are required for a complete reaction?

User Jon Reid
by
5.7k points

2 Answers

4 votes

Answer:

21g

Step-by-step explanation:

no.ofmol fe2o3=39.5/(56×2+16×3)=0.25mol

from equation 1mole fe2o3 react with 3mole co

so,0.25mol fe2o3 react with 0.75mol co

mass of co=0.75×(12+16)=21g

User Lozflan
by
6.5k points
2 votes

Answer:

Approximately
20.8\; \rm g.

Step-by-step explanation:


\rm Fe_2O_3 \, (s) + 3\; CO\, (g) \to 2\; Fe\, (s) + 3\; CO_2\, (g).

Relative atomic mass:


  • \rm Fe:
    55.845.

  • \rm C:
    12.011.

  • \rm O:
    15.999.

Formula mass:


\begin{aligned}M({\rm Fe_2O_3}) &= 2 * 55.845 + 3 * 15.999\\ &= 159.687\; \rm g \cdot mol^(-1)\end{aligned}.


\begin{aligned}M({\rm CO}) &= 12.011 + 15.999\\ &= 28.010\; \rm g \cdot mol^(-1)\end{aligned}.

Number of moles of
\rm Fe_2O_3 formula units in
39.5\; \rm g of this compound:


\begin{aligned}&n({\rm Fe_2O_3}) \\ &= \frac{m({\rm Fe_2O_3})}{M({\rm Fe_2O_3})} \\ &= (39.5\; \rm g)/(159.687\; \rm g \cdot mol^(-1))\approx 0.247\; \rm mol\end{aligned}.

Refer to the balanced equation for this reaction.

  • Coefficient of
    \rm Fe_2O_3:
    1.
  • Coefficient of
    \rm CO:
    3.

Hence, for every formula unit of
\rm Fe_2O_3 that this reaction consumes,
3\; \rm mol of
\rm CO molecules would also need to be consumed. Therefore, if neither reactant is in excess:


\displaystyle \frac{n({\rm CO})}{n({\rm Fe_2O_3})} = (3)/(1) = 3.

Calculate the number of moles of
\rm CO required to react with that
39.5\; \rm g of
\rm Fe_2O_3:


\begin{aligned}&n({\rm CO}) \\ &= n({\rm Fe_2O_3}) \cdot \frac{n({\rm CO})}{n({\rm Fe_2O_3})} \\[0.5em] &\approx 0.247\; \rm mol * 3 \approx 0.742\; \rm mol\end{aligned}.

Make use of the formula mass of
\!\rm CO to find the mass of that
0.742\; \rm mol of
\rm CO molecules:


\begin{aligned} m({\rm CO}) &= n({\rm CO}) \cdot M({\rm CO}) \\ &\approx 0.742\; \rm mol * 28.010\; \rm g \cdot mol^(-1) \\ &\approx 20.8\; \rm g\end{aligned}.

User Alexpopescu
by
5.4k points