222k views
3 votes
CotA + tanA= secAcosecA

2 Answers

3 votes


(cos^2A + sin^2A)/(sinAcosA)Answer:

Explanation:

cotA + tanA = secAcosecA

LHS=cotA + tanA

=
(cosA)/(sinA) +
(sinA)/(cosA)

take lcm of the denominator

=
(cosA*cosA + sinA*sinA)/(sinAcosA)(COS^2A + sin^2A =1)

=
(1)/(sinAcosA)

=1/sinA * 1/cosA

=cosecA*secA

=secAcosecA

therefore LHS=RHS

hence proved.

User JJoao
by
3.9k points
5 votes

Explanation:

cotA + tanA

= cosA / sinA+ sinA/ cosA

= cos2A + sin2A / sinA* cosA

= 1 / sinA* cosA

=1/ sinA * 1/ cosA

= cosecA *secA

=secAcosecA

User Brian Logan
by
4.7k points