37.1k views
17 votes

\rm \: If \: y = {e}^(x) - (1)/(x) + { log_(e)x } \: \: find \: (dy)/(dx)

Thanks!!​

User Elpazio
by
5.3k points

1 Answer

3 votes

We are given with a function y and need to find dy/dx or the first Derivative of y w.r.t.x , but let's recall


  • {\boxed{\bf{(d)/(dx)\{f(x)\pm g(x)\pm h(x)\pm \cdots =(d)/(dx)\{f(x)\}\pm (d)/(dx)\{g(x)\}\pm (d)/(dx)\{h(x)\}\pm \cdots}}}


  • {\boxed{\bf{(d)/(dx)(x^n)=nx^(n-1)}}}


  • {\boxed{\bf{(d)/(dx)(log_(e)x)=(1)/(x)}}}


  • {\boxed{\bf{(d)/(dx)(e^x)=e^(x)}}}

Now consider :


{:\implies \quad \sf y=e^(x)-(1)/(x)+log_(e)x}

Differentiating both sides w.r.t.x


{:\implies \quad \sf (d)/(dx)(y)=(d)/(dx)\bigg\{e^(x)-(1)/(x)+log_(e)x\bigg\}}


{:\implies \quad \sf (dy)/(dx)=(d)/(dx)(e^x)-(d)/(dx)\left((1)/(x)\right)+(d)/(dx)(log_(e)x)}


{:\implies \quad \sf (dy)/(dx)=e^(x)-(d)/(dx)(x^(-1))+(1)/(x)}


{:\implies \quad \sf (dy)/(dx)=e^(x)-(-1)(x)^(-1-1)+(1)/(x)}


{:\implies \quad \sf (dy)/(dx)=e^(x)+(x)^(-2)+(1)/(x)}


{:\implies \quad \sf (dy)/(dx)=e^(x)+(1)/(x^(2))+(1)/(x)}

Simplifying will yield


{:\implies \quad \bf \therefore \quad \underline{\underline{(dy)/(dx)=(e^(x)x^(2)+x^(2)+x)/(x^(2))}}}

This is the required answer

User Prashant Thakre
by
5.3k points