103k views
5 votes

\lim_(h \to \116) x-16/√(x) -4
What is the limit?

User Inkane
by
4.0k points

1 Answer

1 vote

Answer:


\displaystyle 8

Explanation:

we would like to compute the following limit


\displaystyle \lim_(x \to 16) \left( (x - 16)/( √(x) - 4) \right)

if we substitute 16 directly we'd end up


\displaystyle = (16 - 16)/( √(16) - 4)


\displaystyle = (0)/( 0)

which isn't a good answer now notice that we have a square root on the denominator so we can rationalise the denominator to do so multiply the expression by √x+4/√x+4 which yields:


\displaystyle \lim_(x \to 16) \left( (x - 16)/( √(x) - 4) * ( √(x) + 4 )/( √(x) + 4 ) \right)

simplify which yields:


\displaystyle \lim_(x \to 16) \left( ((x - 16)( √(x) + 4))/( x - 16) \right)

we can reduce fraction so that yields:


\displaystyle \lim_(x \to 16) \left( \frac{ \cancel{(x - 16)}( √(x) + 4)}{ \cancel{x - 16} } \right)


\displaystyle \lim _(x \to 16) \left( √(x ) + 4\right)

now it's safe enough to substitute 16 thus

substitute:


\displaystyle = √(16) + 4

simplify square root:


\displaystyle = 4 + 4

simplify addition:


\displaystyle = 8

hence,


\displaystyle \lim_(x \to 16) \left( (x - 16)/( √(x) - 4) \right) = 8

User Kfriend
by
4.4k points