56.4k views
24 votes
Find the value of X for the given parallelogram

Find the value of X for the given parallelogram-example-1

2 Answers

12 votes
Opposite angles in a parallelogram are congruent

So,


6x-10 = 2x + 50

Now solve like a normal equation

4x = 60
x = 15
User Mike Seplowitz
by
8.4k points
1 vote

Answer:

  • 15


\:

Explanation:

Parallelogram is a quadrilateral whose both pairs of opposite sides are parallel and equal and opposite angles are also equal.


\:

So,


\\ { \longrightarrow \qquad{ \pmb{ \sf { \angle P = \angle R}}}} \: \: \\ \\


{ \longrightarrow \qquad{ \pmb{ \sf { 6x - 10 = 2x + 50}}}} \: \: \\ \\

Subtracting 2x from both sides we get :


\\ { \longrightarrow \qquad{ \pmb{ \sf { 6x - 10 - 2x = 2x + 50 - 2x}}}} \: \: \\ \\


{ \longrightarrow \qquad{ \pmb{ \sf { 4x - 10 = 50 }}}} \: \: \\ \\

Adding 10 to both sides we get :


\\ { \longrightarrow \qquad{ \pmb{ \sf { 4x - 10 + 10 = 50 + 10 }}}} \: \: \\ \\


{ \longrightarrow \qquad{ \pmb{ \sf { 4x = 60 }}}} \: \: \\ \\

Dividing 4 from both sides we get :


{ \longrightarrow \qquad{ \pmb{ \sf { (4x)/(4) = (60)/(4) }}}} \: \: \\ \\


{ \longrightarrow \qquad{ \pmb{ \frak { x = 15 }}}} \: \: \\ \\

Therefore,

  • The value of x is 15

User Dmytro Zavalkin
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories