31.8k views
4 votes
Anyone have the answer for this

Anyone have the answer for this-example-1
User Rajnesh
by
5.2k points

1 Answer

6 votes


\huge\bold{Given:}

Length of the base = 16 km.

Length of the hypotenuse = 34 km.
\huge\bold{To\:find:}

The length of the missing leg ''
a".


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}

The length of the missing leg "a" is
\boxed{30\:km}.


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}

Using Pythagoras theorem, we have


({perpendicular})^(2) + ({base})^(2) = ({hypotenuse})^(2) \\ ⇢ {a}^(2) + ({16 \: km})^(2) = ({34 \: km})^(2) \\ ⇢ {a}^(2) + 256 \: {km}^(2) = 1156 \: {km}^(2) \\ ⇢ {a}^(2) = 1156 \: {km}^(2) - 256 \: {km}^(2) \\ ⇢ {a}^(2) = 900 \: {km}^(2) \\ ⇢a \: = \sqrt{900 \: {km}^(2) } \\ ⇢a = \sqrt{30 * 30 \: {km}^(2) } \\ ⇢a = 30 \: km


\sf\blue{Therefore,\:the\:length\:of\:the\:missing\:leg\:


\huge\bold{To\:verify :}


( {30 \: km})^(2) + ({16 \: km})^(2) =( {34 \: km})^(2) \\ ⇝900 \: {km}^(2) + 256 \: {km}^(2) = 1156 \: {km}^(2) \\⇝1156 \: {km}^(2) = 1156 \: {km}^(2) \\ ⇝L.H.S.=R. H. S

Hence verified. ✔


\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘

Anyone have the answer for this-example-1
User Lourdes
by
4.9k points