161k views
5 votes
Find a formula for dy/dx if sin x + cos y + sec(xy) = 251

User Brin
by
8.5k points

1 Answer

5 votes

Answer:


\displaystyle (dy)/(dx) = (-cos(x) - ysec(xy)tan(xy))/(-sin(y) + xsec(xy)tan(xy))

General Formulas and Concepts:

Pre-Algebra

Distributive Property

Algebra I

  • Factoring

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Trig Differentiation

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Implicit Differentiation

Explanation:

Step 1: Define

Identify

sin(x) + cos(y) + sec(xy) = 251

Step 2: Differentiate

  1. [Implicit Differentiation] Trig Differentiation [Chain Rule]:
    \displaystyle cos(x) - sin(y)(dy)/(dx) + sec(xy)tan(xy) \cdot (y + x(dy)/(dx)) = 0
  2. [Subtraction Property of Equality] Isolate
    \displaystyle (dy)/(dx) terms:
    \displaystyle -sin(y)(dy)/(dx) + sec(xy)tan(xy) \cdot (y + x(dy)/(dx)) = -cos(x)
  3. [Distributive Property] Distribute sec(xy)tan(xy):
    \displaystyle -sin(y)(dy)/(dx) + ysec(xy)tan(xy) + xsec(xy)tan(xy)(dy)/(dx) = -cos(x)
  4. [Subtraction Property of Equality] Isolate
    \displaystyle (dy)/(dx) terms:
    \displaystyle -sin(y)(dy)/(dx) + xsec(xy)tan(xy)(dy)/(dx) = -cos(x) - ysec(xy)tan(xy)
  5. Factor out
    \displaystyle (dy)/(dx):
    \displaystyle (dy)/(dx)[-sin(y) + xsec(xy)tan(xy)] = -cos(x) - ysec(xy)tan(xy)
  6. [Division Property of Equality] Isolate
    \displaystyle (dy)/(dx):
    \displaystyle (dy)/(dx) = (-cos(x) - ysec(xy)tan(xy))/(-sin(y) + xsec(xy)tan(xy))

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

User Tshauck
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories