Answer:
The trigonometric ratios are presented below:





Explanation:
From Trigonometry we know the following definitions for each trigonometric ratio:
Sine
(1)
Cosine
(2)
Tangent
(3)
Cotangent
(4)
Secant
(5)
Cosecant
(6)
Where:
- Adjacent leg.
- Opposite leg.
- Hypotenuse.
The length of the hypotenuse is determined by the Pythagorean Theorem:

If
and
, then the trigonometric ratios are presented below:




