126k views
4 votes
Given the following trigonometric ratio, enumerate the meaning ratio ​

Given the following trigonometric ratio, enumerate the meaning ratio ​-example-1
User Mangei
by
4.3k points

1 Answer

4 votes

Answer:

The trigonometric ratios are presented below:


\sin \theta = \frac{AC}{\sqrt{AC^(2) + BC^(2)}}


\cos \theta = \frac{BC}{\sqrt{AC^(2) + BC^(2)}}


\cot \theta = (BC)/(AC)


\sec \theta = \frac{\sqrt{AC^(2)+BC^(2)}}{BC}


\csc \theta = \frac{\sqrt{AC^(2)+BC^(2)}}{AC}

Explanation:

From Trigonometry we know the following definitions for each trigonometric ratio:

Sine


\sin \theta = (y)/(h) (1)

Cosine


\cos \theta = (x)/(h) (2)

Tangent


\tan \theta = (\sin \theta)/(\cos \theta) = (y)/(x) (3)

Cotangent


\cot \theta = (\cos \theta)/(\sin \theta) = (x)/(y) (4)

Secant


\sec \theta = (1)/(\cos \theta) = (h)/(x) (5)

Cosecant


\csc \theta = (1)/(\sin \theta) = (h)/(y) (6)

Where:


x - Adjacent leg.


y - Opposite leg.


h - Hypotenuse.

The length of the hypotenuse is determined by the Pythagorean Theorem:


h = \sqrt{x^(2)+y^(2)}

If
y = AC and
x = BC, then the trigonometric ratios are presented below:


\sin \theta = \frac{AC}{\sqrt{AC^(2) + BC^(2)}}


\cos \theta = \frac{BC}{\sqrt{AC^(2) + BC^(2)}}


\cot \theta = (BC)/(AC)


\sec \theta = \frac{\sqrt{AC^(2)+BC^(2)}}{BC}


\csc \theta = \frac{\sqrt{AC^(2)+BC^(2)}}{AC}

User Thingamabobs
by
4.5k points