This question is incomplete, the complete question is;
Assume the random variable x is normally distributed with mean p = 80 and standard deviation σ = 4.
Find the indicated probability. P(67 < x < 72)
(Round to four decimal places as needed.)
Answer:
the indicated is 0.0222
Explanation:
Given the data in the question;
mean μ = 80
standard deviation σ = 4
p ⇒ P ( x -μ / σ )
so
P(67 < x < 72) ⇒ P( 67-80 / 4 ) < P( x -μ / σ ) < P( 72-80 / 4 )
P(67 < x < 72) ⇒ P( -13 / 4 ) < P( x -μ / σ ) < P( -8 / 4 )
P(67 < x < 72) ⇒ P( -13 / 4 < z < -8 / 4 )
P(67 < x < 72) ⇒ P( -3.25 < z < -2 )
⇒ P( z < -2 ) - P( z < -3.25)
Now from z table;
⇒ 0.02275 - 0.00058
P(67 < x < 72) ⇒ 0.02217 ≈ 0.0222 { four decimal places }
Therefore, the indicated is 0.0222