2.9k views
3 votes
Prove the Identity:


\large{ (cos( - \theta))/(1 - sin \theta) - (cos( \theta + \pi))/(1 + sin \theta) = (2)/(cos \theta) }
Show your work, thanks! ​

2 Answers

3 votes


\boxed{\large{\bold{\textbf{\textsf{{\color{blue}{Answer}}}}}}:)}


  • \sf{(cos( - \theta))/(1 - sin \theta) - (cos( \theta + \pi))/(1 + sin \theta) }


\\

[
\tt{cos(-\theta)=cos\theta } ]


  • \sf{(cos \theta)/(1 - sin \theta) - (cos( \theta + \pi))/(1 + sin \theta)}


\\

[
\tt{cos(\theta+\pi)=-cos\theta } ]


  • \sf{(cos \theta)/(1 - sin \theta) - (-cos\theta )/(1 + sin \theta)}


  • \sf{(cos \theta)/(1 - sin \theta) + (cos\theta )/(1 + sin \theta)}


\\


  • \sf{cos\theta((1)/(1-sin\theta)+(1)/(1+sin\theta) ) }


  • \sf{cos\theta((1+sin\theta+1-sin\theta)/((1)^2-(sin\theta)^2 ))}


  • \sf{cos\theta(\frac{1\cancel{+sin\theta}+1\cancel{-sin\theta}}{(1)^2-(sin\theta)^2 })}


  • \sf{cos\theta((2)/(1-sin^2\theta ))}


\\

[
\tt{1-sin^2\theta=cos^2\theta } ]


  • \sf{cos\theta((2)/(cos^2\theta ))}


  • \sf{cos\theta((2)/(cos\theta×cos\theta ))}


  • \sf{\cancel{cos\theta}×(\frac{2}{cos\theta×\cancel{cos\theta} })}


  • \sf{(2)/(cos\theta) }


\sf{ }


\sf{ }


\therefore{ (cos( - \theta))/(1 - sin \theta) - (cos( \theta + \pi))/(1 + sin \theta) = (2)/(cos \theta) }(proved)

User Jgritty
by
4.3k points
4 votes

Answer:

Use properties:

  • cos(-θ) = cosθ
  • cos(θ + π) = - cosθ
  • sin²θ + cos²θ = 1

Solution:

  • cosθ/(1 - sinθ) - (-cosθ)/(1 + sinθ) =
  • cosθ([1/(a- sinθ) + 1/(1 + sinθ)] =
  • cosθ[(1 + sinθ + 1 - sinθ)/(1 - sin²θ)] =
  • cosθ(2/cos²θ) =
  • 2/cosθ

Proved

User Robert C Edwards
by
3.5k points