Answer:
Surface area of the given pyramid = 386.16 cm²
Explanation:
Surface area of the given pyramid = Area of the square base + Area of the lateral sides
Area of the square base = (Side)²
= (12)²
= 144 cm²
Area of the lateral side =
![(1)/(2)(\text{Base})(\text{Lateral height})](https://img.qammunity.org/2022/formulas/mathematics/college/5gq0y7c2todmtfkdlyz2bl1xq49g85nwlv.png)
Lateral height of the triangle =
[By applying Pythagoras theorem]
=
![√(82.81+36)](https://img.qammunity.org/2022/formulas/mathematics/college/7k7vwrmbz9tg3ko1tsqv0obx4onf8kc9d4.png)
=
![√(118.81)](https://img.qammunity.org/2022/formulas/mathematics/college/ciof099y82bxy6sw6ahxhs6a7isffdnenz.png)
= 10.9 cm
Area of the lateral side =
![(1)/(2)(12)(10.9)](https://img.qammunity.org/2022/formulas/mathematics/college/fc0cwokljlaglqi4y1sh8zew0keheq8b0f.png)
= 60.54 cm²
Surface area of the given pyramid = Area of the base + 4(Area of one lateral side)
= 144 + 4(60.54)
= 144 + 242.16
= 386.16 cm²