204k views
2 votes
​ g(1)=−19 g(n)=g(n−1)+6 ​ Find an explicit formula for g(n)g(n)g, left parenthesis, n, right parenthesis. g(n)=g(n)=g, left parenthesis, n, right parenthesis, equals

User Bialy
by
4.0k points

1 Answer

5 votes

Answer:


g(n) = 6n -25

Explanation:

Given:


g(1) = -19


g(n) = g(n - 1) + 6

Required

The explicit formula

Let n = 2; So, we have:


g(n) = g(n - 1) + 6


g(2) = g(2 - 1) + 6


g(2) = g(1) + 6


g(2) = -19 + 6


g(2) = -13

So, we have:


g(1) = -19 ----- First term


g(2) = -13

Calculate common difference (d)


d = g(2) - g(1)


d = -13 --19


d = 6

The explicit function is then calculated as:


g(n) = a + (n - 1)d

Where


a = -19 --- First term

So:


g(n) = a + (n - 1)d


g(n) = -19 + (n - 1)*6

Open bracket


g(n) = -19 + 6n - 6

Collect like terms


g(n) = 6n - 6-19


g(n) = 6n -25

User Rwking
by
4.2k points