Answer:
The correct answer is "53.15 days".
Step-by-step explanation:
Given that:
Half life of
,
![T_{(1)/(2) }= 8 \ days](https://img.qammunity.org/2022/formulas/physics/college/9wxdmpdmfpckvab7fopx5gtjhjeg636vty.png)
- Let the initial activity be "
". - and, activity to time t be "R".
To find t when R will be "1%" of
, then
⇒
![R=(1)/(100)R_o](https://img.qammunity.org/2022/formulas/physics/college/kt1bcp2vvq4mrz015pzn9099hfx7akztp3.png)
As we know,
⇒
![R=R_o e^(-\lambda t)](https://img.qammunity.org/2022/formulas/physics/college/yzg4an3mi094nsdgfrcdsnomdhb6dnlffw.png)
or,
∴
![e^(\lambda t)=(R_o)/(R)](https://img.qammunity.org/2022/formulas/physics/college/it2iw43p6tu2ddf84ltkz7wafm2whhztwd.png)
By putting the values, we get
![=(R_o)/((R)/(100) )](https://img.qammunity.org/2022/formulas/physics/college/wt36lq5ju3orfnm536amy1otwhttgt16c2.png)
![=100](https://img.qammunity.org/2022/formulas/mathematics/high-school/hijhuzkv007d31nknpvckgow5afadjsn5i.png)
We know that,
Decay constant,
![\lambda = \frac{ln2}{T_{(1)/(2) }}](https://img.qammunity.org/2022/formulas/physics/college/zzx3z2lcn2hngtmt6dauggjoefr0p5hhj6.png)
hence,
⇒
![\lambda t=ln100](https://img.qammunity.org/2022/formulas/physics/college/93pve97avt0zt61e2nmvtfs8x4mod5csle.png)
![t=(ln100)/(\lambda)](https://img.qammunity.org/2022/formulas/physics/college/iaw1b20onzcjuzu1vobwsdwz4ms474uv2s.png)
![=(ln100)/((ln2)/(8) )](https://img.qammunity.org/2022/formulas/physics/college/o5wxi8hqj5x325sziql1t4n7nge7ch8llw.png)