Answer:
m∠ZWX = 105°
Explanation:
Properties of a kite,
1). One diagonal of a kite bisects at least one pair of opposite angles.
2). Diagonals of a kite kite are perpendicular to each other.
In ΔWTZ,
m∠WZT =
![(1)/(2)(m\angle WZY)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u845y61oxqws29lho08itcjzxllvujpk7d.png)
=
![(1)/(2)(100)](https://img.qammunity.org/2022/formulas/mathematics/high-school/isj2j9mydfd783go63ome4bv78lf0109fg.png)
= 50°
m∠WTZ = 90° [By second property]
m∠WZT + m∠WTZ + m∠ZWT = 180°
50° + 90° + m∠ZWT = 180°
m∠ZWT = 180° - 140°
= 40°
Similarly, in ΔWTX,
![m(\angle WXT)=(1)/(2)(m\angle WXY)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dku13zru1vipld1w5u65oxrv0r6mc555de.png)
m(∠WXT) =
![(1)/(2)(50)](https://img.qammunity.org/2022/formulas/mathematics/high-school/a86q3hqiaf3msm8j9phatnh8yqnowk6eyk.png)
= 25°
m(∠WTX) = 90°
m∠WTX + m∠WXT + m∠TWX = 180°
90° + 25° + m∠TWX = 180°
m∠TWX = 180° - 115°
= 65°
Since, m∠ZWX = m∠ZWT + m∠TWX
Therefore, m∠ZWX = 40° + 65°
= 105°