153k views
5 votes
Find ML, JK=3x+11, ML=10x-12, NP=45

User DenisGL
by
3.7k points

1 Answer

6 votes

Answer:


ML = 58

Explanation:

Given


JK=3x+11, ML=10x-12, NP=45

See attachment

Required

Length ML

First, calculate x using the following equivalent ratios


JK : NP = NP : ML

Express as fraction


(JK )/( NP) = (NP )/( ML)

Cross Multiply


JK * ML = NP * NP

Substitute values:


(3x +11) * (10x - 12) = 45 * 45

Expand


30x^2 - 36x + 110x - 132 = 2025


30x^2 +74x - 132 = 2025

Collect like terms


30x^2 +74x - 132 - 2025=0


30x^2 +74x -2157=0

Using a calculator:


x \approx -10 and
x \approx 7

Given that:


ML=10x-12

Substitute values for x


ML=10*-10-12 = -100 - 12 = -112


ML=10*7-12 = 70 - 12 = 58

ML cannot be negative; So:


ML = 58

Find ML, JK=3x+11, ML=10x-12, NP=45-example-1
User Milbrandt
by
4.6k points