108k views
2 votes
Resolve into partial fractions



Resolve into partial fractions ​-example-1
User Ggalmazor
by
3.5k points

1 Answer

7 votes

Answer:

See below

Explanation:

1)


(11 + x)/((2 - x)(x - 3)) = (A)/(2 - x) + (B)/(x - 3) \\ \\ \therefore \: (11 + x)/((2 - x)(x - 3)) = (A(x - 3) +B(2 - x) )/((2 - x)(x - 3)) \\ \\ \therefore \: 11 + x = Ax - 3A + 2B - Bx \\ \\ \therefore \: 11 + x = - 3A + 2B + Ax - Bx\\ \\ \therefore \: 11 + x = - 3A + 2B + (A - B)x \\ \\ equating \: the \: like \: terms \: on \: both \: sides \\ A - B = 1 \\ \therefore \: A = B + 1.....(1) \\ \\ - 3A + 2B = 11....(2) \\ from \: eq \: (1) \: and \: (2) \\ - 3(B + 1) + + 2B = 11 \\ \\ - 3B - 3 + 2B = 11 \\ \\ - B = 11 + 3 \\ \\ B = - 14 \\ A = - 14 + 1 = - 13 \\ \\ (11 + x)/((2 - x)(x - 3)) = ( - 13)/(2 - x) + ( - 14)/(x - 3) \\ \\ (11 + x)/((2 - x)(x - 3)) = - ( 13)/(2 - x) - ( 14)/(x - 3)

2)


(12x + 11)/(x^2 +x - 6)


=(12x + 11)/(x^2 +3x-2x - 6)


=(12x + 11)/(x(x +3) -2(x +3))


\therefore (12x + 11)/(x^2 +x - 6)=(12x + 11)/((x +3) (x - 2))


\therefore (12x + 11)/(x^2 +x - 6)=(A)/((x +3))+(B)/((x - 2))


\therefore (12x + 11)/(x^2 +x - 6)=(A(x-2)+B(x+3))/((x-2)(x+3))


\therefore 12x + 11 = A(x-2)+B(x+3)


\therefore 12x + 11 = Ax-2A+Bx+3B


\therefore 12x + 11 = Ax+Bx-2A+3B


\therefore 12x + 11 = (A+B) x-2A+3B

Equating like terms on both sides:


A + B = 12\implies A = 12-B... (1)


- 2A + 3B = 11... (2)

Solving equations (1) & (2), we find:

A = 5, B = 7


\therefore (12x + 11)/(x^2 +x - 6)=(5)/((x +3))+(7)/((x - 2))

User Peterw
by
3.6k points