73.8k views
3 votes
If sin0 = 3/4 and is in the first quadrant, then cos0 =

a. 4/5
b. (sqrt 7)/4
c. 1/4
d. (sqrt 21)/3

User AngryITguy
by
4.0k points

2 Answers

4 votes

Answer:


\displaystyle b) { ( \sqrt7)/( 4) }

Explanation:

we are given that


\displaystyle \sin( \theta) = (3)/(4)

we want to figure out Cos
\theta

in order to do so we can consider Pythagoras trig indentity given by


\displaystyle \cos ^(2) ( \theta) = 1 - { \sin}^(2) ( \theta)

given that,sin
\theta

thus substitute,


\displaystyle \cos ^(2) ( \theta) = 1 - \bigg({ (3)/(4) } \bigg)^(2)

simplify square:


\displaystyle \cos ^(2) ( \theta) = 1 - { (3 ^(2) )/(4 ^(2) ) }


\displaystyle \cos ^(2) ( \theta) = 1 - { (9 )/(16 ) }

simplify substraction:


\displaystyle \cos ^(2) ( \theta) = { (16- 9)/(16 ) }


\displaystyle \cos ^(2) ( \theta) = { (7)/(16 ) }

square root both sides:


\displaystyle \sqrt{\cos ^(2) ( \theta) }= \sqrt{{ (7)/(16 ) } }

By square root property:


\displaystyle \cos ^{} ( \theta) = { ( \sqrt7)/( √(16 )) }

simplify root:


\displaystyle \cos ^{} ( \theta) = { ( \sqrt7)/( 4) }

hence, our answer is b

User Akka Jaworek
by
3.5k points
2 votes

Answer:


\sin(θ) = (p)/(h) = (3)/(4)

so

p=3

h=4

b=
\sqrt{4 {}^(2) - {3}^(2) }

b=
√(7)

Now

cosθ=
(b)/(h) = ( √(7) )/(4)

So

b.
( √(7) )/(4)
is a required answer.

User Carsten Hagemann
by
4.0k points