338,325 views
0 votes
0 votes
Solve for x using the figure to the right.
x=

Solve for x using the figure to the right. x=-example-1
User Morgred
by
2.0k points

2 Answers

19 votes
19 votes

Solution:

Finding the hypotenuse of the small triangle:


  • a^(2) = x^(2) + 5^(2)
  • =>
    \sqrt{a^(2)} = \sqrt{x^(2) + 5^(2)}
  • =>
    a = \sqrt{x^(2) + 25}

Finding the hypotenuse of the big triangle:


  • b^(2) = x^(2) + 45

  • \sqrt{b^(2) } = \sqrt{x^(2) + 45^(2) }

  • b = \sqrt{x^(2) + 2025 }

Finding the value of x.


  • (45 + 5)^(2) = (\sqrt{x^(2) + 25} )^(2) + (\sqrt{x^(2) + 2025} )^(2)

  • (50)^(2) = (\sqrt{x^(2) + 25} )(\sqrt{x^(2) + 25} ) + (\sqrt{x^(2) + 2025} )(\sqrt{x^(2) + 2025} )

  • 2500 = x^(2) + 25 + {x^(2) + 2025}

  • 2500 = 2x^(2) + 2050

  • 450 = 2x^(2)

  • 225 = x^(2)

  • x = \±15
User Coffeeaddict
by
3.1k points
7 votes
7 votes

Answer:

x = 15

Step-by-step explanation:

we have to find both the hypotenuse of the triangles to solve this.

for the smaller triangle:

x² + 5² = h²

h = √x² + 5²

for the bigger triangle:

x² + 45² = h²

h = √x² + 45²

now that if you look, we found the sides - adjacent and leg side of the Δ

solving using Pythagoras theorem:

a² + b² = c²

(√x² + 45²)² + (√x² + 5²)² = 50²

x² + 2025 + x² + 25 = 2500

2x² = 450

x² = 225

x = ± 15

x = 15

User Frank Breitling
by
3.3k points