Answer:

General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Functions
- Function Notation
- Factoring
Calculus
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/i90hl6t3gcguvrecodn8t9gnodav0w5ns8.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2022/formulas/mathematics/college/c6fshhoq1mws6w0d0la17c7k2dcytwd8kg.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Step-by-step explanation:
Step 1: Define
Identify
y = x(1 + x)³
Step 2: Differentiate
- Product Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = (d)/(dx)[x] \cdot (1 + x)^3 + x \cdot (d)/(dx)[(1 + x)^3] \cdot (d)/(dx)[1 + x]](https://img.qammunity.org/2022/formulas/health/high-school/pje6oau1f8ioo23db6uqca6jm8et9ykv7v.png)
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = (d)/(dx)[x] \cdot (1 + x)^3 + x \cdot (d)/(dx)[(1 + x)^3] \cdot ((d)/(dx)[1] + (d)/(dx)[x])](https://img.qammunity.org/2022/formulas/health/high-school/51f88shahj1vl7zapl3cb9f2tgcle0zl2t.png)
- Basic Power Rule:

- Simplify:

- Factor:
![\displaystyle y' = (1 + x)^2 \bigg[ (1 + x) + 3x \bigg]](https://img.qammunity.org/2022/formulas/health/high-school/jniyc5qmzac6dd0lid0xqdnb3e3w7srank.png)
- Combine like terms:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e