50.1k views
11 votes

\displaystyle \rm\lim_(n \to \infty ) \sqrt[n]{ \left( \sum_(k = 1)^(n) \frac{ {k}^(2) }{ {2k}^(2) - 2nk + {n}^(2) } \right) \left( \sum_(k = 1)^(n) \frac{ {k}^3}{ {3k}^(2) - 3nk + {n}^(2) } \right)}​ ​

1 Answer

10 votes

Rewrite the sums as


\displaystyle S_2 = \sum_(k=1)^n (k^2)/(2k^2 - 2nk + n^2) = \sum_(k=1)^n \frac{(k^2)/(n^2)}{(2k^2)/(n^2) - \frac{2k}n + 1}

and


\displaystyle S_3 = \sum_(k=1)^n (k^2)/(3k^2 - 3nk + n^2) = \sum_(k=1)^n \frac{(k^2)/(n^2)}{(3k^2)/(n^2) - \frac{3k}n + 1}

Now notice that


\displaystyle \lim_(n\to\infty) \frac{S_2}n = \int_0^1 (x^2)/(2x^2 - 2x + 1) = \frac12

and


\displaystyle \lim_(n\to\infty) \frac{S_3}n = \int_0^1 (x^2)/(3x^2 - 3x + 1) = (9 + 2\pi\sqrt3)/(27)

and the important point here is that
\frac{S_2}n and
\frac{S_3}n converge to constants. For any real constant a, we have


\displaystyle \lim_(n\to\infty) \frac{\ln(an)}n = 0

Rewrite the limit as


\displaystyle \lim_(n\to\infty) \sqrt[n]{S_2 * S_3} = \lim_(n\to\infty) \exp\left(\ln\left(\sqrt[n]{S_2 * S_3}\right)\right) \\\\ = \exp\left(\lim_(n\to\infty) \frac{\ln(S_2) + \ln(S_3)}n\right) \\\\ = \exp\left(\lim_(n\to\infty) \frac{\ln\left(n * \frac{S_2}n\right) + \ln\left(n * \frac{S_3}n\right)}n\right)

Then


\displaystyle \lim_(n\to\infty) \sqrt[n]{S_2 * S_3} = e^0 = \boxed{1}

A plot of the limand for n = first 1000 positive integers suggests the limit is correct, but convergence is slow.

\displaystyle \rm\lim_(n \to \infty ) \sqrt[n]{ \left( \sum_(k = 1)^(n) \frac{ {k-example-1
User Ullas Hunka
by
8.7k points