Rewrite the sums as

and

Now notice that

and

and the important point here is that
and
converge to constants. For any real constant a, we have

Rewrite the limit as
![\displaystyle \lim_(n\to\infty) \sqrt[n]{S_2 * S_3} = \lim_(n\to\infty) \exp\left(\ln\left(\sqrt[n]{S_2 * S_3}\right)\right) \\\\ = \exp\left(\lim_(n\to\infty) \frac{\ln(S_2) + \ln(S_3)}n\right) \\\\ = \exp\left(\lim_(n\to\infty) \frac{\ln\left(n * \frac{S_2}n\right) + \ln\left(n * \frac{S_3}n\right)}n\right)](https://img.qammunity.org/2023/formulas/mathematics/college/sknwqfy5za7rj771e6upzsns6pvlwigosg.png)
Then
![\displaystyle \lim_(n\to\infty) \sqrt[n]{S_2 * S_3} = e^0 = \boxed{1}](https://img.qammunity.org/2023/formulas/mathematics/college/z1xfbfpmjxz72w3p4p4zgx02yb3x9hxtx5.png)
A plot of the limand for n = first 1000 positive integers suggests the limit is correct, but convergence is slow.