110,036 views
13 votes
13 votes
A farmer wishes to enclose a rectangular plot with a wire fence. The width of the plot is 3 metres less than its length (x). The area enclosed by the fence is 378 square metres. Form an equation in x and hence find the length of the plot.

Help​

User Dolcalmi
by
2.4k points

2 Answers

18 votes
18 votes
  • Length is x
  • Width be x-3


\\ \rm\rightarrowtail Area=Length* Width


\\ \rm\rightarrowtail x(x-3)=378


\\ \rm\rightarrowtail x^2-3x=378


\\ \rm\rightarrowtail x^2-3x-378=0


\\ \rm\rightarrowtail x^2-21x+18x-378=0


\\ \rm\rightarrowtail (x+18)(x-21)=0


\\ \rm\rightarrowtail x=-18,21

Take it positive

  • Length=21m
User Abourget
by
3.2k points
18 votes
18 votes

Let the length be x

Let the width be x-3

Now,


\red \dashrightarrow \mathcal{Area = Length×Breadth}

  • Area is given i.e. 378 m²


\red \dashrightarrow \sf \: 378 = x * (x - 3)


\red \dashrightarrow \sf \: 378 = {x}^(2) - 3x


\red \dashrightarrow \sf \: 378 - {x}^(2) + 3x = 0


\red \dashrightarrow \sf \: - 378 + {x}^(2) - 3x = 0


\red \dashrightarrow \sf \: {x}^(2) - 3x - 378= 0


\red \dashrightarrow \sf \: {x}^(2) + 18x - 21x - 378= 0


\red \dashrightarrow \sf \: x * (x + 18) - 21(x + 18)= 0


\red \dashrightarrow \sf \: (x + 18) (x - 21)= 0


\red \dashrightarrow \sf \: x + 18= 0 \\ \red \dashrightarrow \sf \: x - 21= 0


\red \dashrightarrow \sf \: x = - 18 \\ \red \dashrightarrow \sf \: x = 21

  • Since the dimension cannot be in negative, We will consider x is 21


\colorbox{lightyellow}{length = x = 21}


\colorbox{lightyellow}{breadth= x - 3= 21 - 3 = 18}

User Toolshed
by
3.4k points