Answer: 200 square units
Explanation:
Given
Circumference of the circle is
![20\pi](https://img.qammunity.org/2022/formulas/mathematics/high-school/r7spdxajkifzf7tvjh7haam2boawtsddk6.png)
Suppose r is the radius of the circle
The biggest area of a quadrilateral that can fit in a circle is of square.
Deduce the radius of the circle
![2\pi r=20\pi\\r=10\ \text{units}](https://img.qammunity.org/2022/formulas/mathematics/high-school/m0u5dy9a5pej7trlb0zm616pmgp344p23h.png)
Suppose the side of the square is a
from the figure, we can write
![\Rightarrow a^2+a^2=(2r)^2\\\Rightarrow 2a^2=4r^2\\\Rightarrow a=√(2)r\\\Rightarrow a=10√(2)\ \text{units}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vczzhx2w70qwh8l26sgrq19cnaixhofe7y.png)
Area of the quadrilateral is
![\Rightarrow A=(10√(2))^2\\\Rightarrow A=100* 2\\\Rightarrow A=200\ \text{square units}](https://img.qammunity.org/2022/formulas/mathematics/high-school/s7idlyons1hliky28bdek4gy39uje827fl.png)