196,066 views
7 votes
7 votes

\rm For \: a \in\R |a| > 1, let \\ \rm \lim_(n \to \infty ) \left \lgroup \rm\frac{1 + \sqrt[3]{2} + \dots + \sqrt[3]{n} }{ {n}^{ (7)/(3) } \left( \frac{1}{(an + 1 {)}^(2) } + \frac{1}{(an + 2 {)}^(2) } + \dots \frac{1}{(an + n{)}^(2) } \right) } \right\rgroup = 54 \\ \rm then \: the \: possible \: value \: of \: a \: is

User David Rz Ayala
by
2.7k points

1 Answer

17 votes
17 votes

A possible starting point:

Split up the limit as


\displaystyle \lim_(n\to\infty) \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^(4/3)} * \lim_(n\to\infty) \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} = 54

Consider the first limit,


\displaystyle \lim_(n\to\infty) \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^(4/3)}

Refer to the Stolz-Cesàro theorem, which says


\displaystyle \lim_(n\to\infty) (a_n)/(b_n) = \lim_(n\to\infty)(a_(n+1)-a_n)/(b_(n+1)-b_n)

where
a_n and
b_n are two real sequences, with
b_n monotone and divergent. In this case,


a_n = 1+\sqrt[3]{2}+\sqrt[3]{3}+\cdots+\sqrt[3]{n}


b_n = n^(4/3)

Applying S-C, we get


\displaystyle \lim_(n\to\infty) \frac{\sqrt[3]{n+1}}{(n+1)^(4/3) - n^(4/3)} = \lim_(n\to\infty) ((n+1)^(1/3))/((n+1)^(4/3) - n^(4/3))

Recalling the difference of cubes identity,


a^3 - b^3 = (a - b) (a^2 + ab + b^2)

we can rewrite the limit as


\displaystyle \lim_(n\to\infty) ((n+1)^3 + (n+1)^(5/3) n^(4/3) + (n+1)^(1/3) n^(8/3))/((n+1)^4 - n^4)

and dividing uniformly through the limand by (n + 1)³ yields


\displaystyle \lim_(n\to\infty) \frac{1 + \left(\frac n{n+1}\right)^(4/3) + \left(\frac n{n+1}\right)^(8/3)}{(n+1) - (n^4)/((n+1)^3)}

Now,


n^4 = (n+1)^4 - 4n^3 - 6n^2 - 4n - 1


\implies (n^4)/((n+1)^3) = (n+1) - (4n^3+6n^2+4n+1)/((n+1)^3)

so the denominator in the limit reduces to a degree-1 polynomial with leading coefficient +4. The numerator converges to 1 + 1 + 1 = 3, so this first limit evaluates to


\displaystyle \lim_(n\to\infty) \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^(4/3)} = \frac34

It remains to determine the value of a such that


\displaystyle \lim_(n\to\infty) \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} = \frac43*54 = 72

We have a natural choice of lower and upper bounds for the sum in the denominator:


\displaystyle \frac1{(an+n)^2} + \cdots + \frac1{(an+n)^2} \\\\ ~ ~ ~ ~ \le \frac1{(an+1)^2} + \cdots + \frac1{(an+n)^2} \\\\ ~ ~ ~ ~ ~ ~ ~ ~ \le \frac1{(an+1)^2} + \cdots + \frac1{(an+1)^2}


\implies \displaystyle (n)/((an+n)^2) \le \frac1{(an+1)^2} + \cdots + \frac1{(an+n)^2} \le (n)/((an+1)^2)

and


\displaystyle \lim_(n\to\infty) n*(n)/((an+n)^2) = \frac1{(a+1)^2}


\displaystyle \lim_(n\to\infty) n*(n)/((an+1)^2) = \frac1{a^2}

so that by the squeeze/sandwich theorem,


\displaystyle \frac1{(a+1)^2} \le \lim_(n\to\infty) n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right) \le \frac1{a^2}


\implies \displaystyle a^2 \le \lim_(n\to\infty) \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} \le (a+1)^2

and if the middle limit is supposed to evaluate to 72, solving the inequality for a puts it in the interval [6√2 - 1, 6√2] ≈ [7.48528, 8.48528].

Checking against a computer, the solution appears to be a = 8, which agrees with the analysis above. Just not sure how to bridge the gap yet...

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.