Answer:
Explanation:
Given triangle ABC is a right triangle.
m∠ACB = 60°
m∠CAB = 30°
m(AC) = 1 unit
A). Shorter side of the given triangle = Side BC
By applying cosine rule,
cos(∠C) =
![\frac{\text{Adjacent side}}{\text{Hypotenuse}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/2g10r4cqopjqdlu10ohof3crit2z805ax1.png)
cos(60°) =
![(BC)/(AC)](https://img.qammunity.org/2022/formulas/mathematics/high-school/o23wust3iwxc7x37e1hm9le7pqqekm113l.png)
BC =
![(1)/(2)(AC)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bhgfaze0qhzqx33q853lvqlk19pym4e2nw.png)
BC =
![(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/f0qcv9cek84ihznc3s7uf39dlk9xfru67q.png)
Length of the shorter side = 0.5 units
B). Longer side of the given triangle = side AB
By applying Pythagoras theorem in the given triangle,
AC² = AB² + BC²
1² = AB² +
![((1)/(2))^2](https://img.qammunity.org/2022/formulas/mathematics/college/ot8idse2u8qktaie42e3qrif23n8e4j5lm.png)
1 = AB² +
![(1)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/8sgkbqu3iaqhrj3ec3ravgp4pqwnwrhmb4.png)
AB =
![\sqrt{1-(1)/(4)}](https://img.qammunity.org/2022/formulas/mathematics/college/fu1cnu9m6rvyqtrcxiv755z5q3xebwru54.png)
AB =
![\sqrt{(3)/(4)}](https://img.qammunity.org/2022/formulas/mathematics/college/xbfw2ndfqxojxy1pl8xw0c4fglj5o7magi.png)
AB =
![(√(3) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/li8x8vt0urugavcdid7jw71ik6pgp2yzpf.png)
Length of the longer side =
![(√(3))/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/is04nxy215n02f332jz2ah3pr4ccfawpgj.png)