Given:
The logarithmic equation is:
![\log x+\log (x-3)=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/rc2gyqjm3r15h9pgfzzyqi0s7dyshbc3y3.png)
To find:
The value of x.
Solution:
Properties of logarithm used:
![\log a+\log b=\log (ab)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5su22ao8fx4ie3zsen3i8ex1bmmgkvw8vh.png)
![\log 10=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/p3bfzitqdbatjp7je3ah61nt69z2vah7nj.png)
is defined for
.
We have,
![\log x+\log (x-3)=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/rc2gyqjm3r15h9pgfzzyqi0s7dyshbc3y3.png)
Using properties of logarithm, we get
![\log [x(x-3)]=\log 10](https://img.qammunity.org/2022/formulas/mathematics/high-school/7wwb8sw22tlv0r3mjsb3qmvbsrkc1bp6w2.png)
![x^2-3x=10](https://img.qammunity.org/2022/formulas/mathematics/high-school/vfr7j3q49lyvf8zw1ejts6l2z348d8j046.png)
Splitting the middle term, we get
![x^2-5x+2x-10=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/zi9wpfuaytdf0cswk8c5gylxfee5c35vl9.png)
![x(x-5)+2(x-5)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/qz9s3k7bge8eqabs9zyw0qkzz55x18ed5u.png)
![(x-5)(x+2)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/riis0axv47djn6cisnsxv6zwa6a1qkm1qd.png)
![x=5,-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/q3rrr2wpnyrjqhpezsk8ynszvf55n1pf9a.png)
In the given equation, we have a term
. It means the value of x must be greater than 0 or positive. So, the only possible value of x is:
![x=5](https://img.qammunity.org/2022/formulas/mathematics/high-school/vndazmbyqu3wu39zuuyki1lbj4enalp9m1.png)
Therefore, the value of x is 5.