375,281 views
15 votes
15 votes
Solve trigonometric function

sin∅ × csc∅ + cos(3π/2 - ∅) × sin∅

User Adlag
by
2.2k points

2 Answers

9 votes
9 votes

Answer:


\cos^2(\theta)

Step-by-step explanation:

Identities used:


\csc(\theta)=(1)/(\sin(\theta))


\cos((3 \pi)/(2)-\theta)=\cos((3 \pi)/(2))\cos(\theta)+\sin((3 \pi)/(2))\sin(\theta)


\textsf{As }\cos((3 \pi)/(2))=0\textsf{ and }\sin((3 \pi)/(2))=-1


\implies \cos((3 \pi)/(2)-\theta)=0 *\cos(\theta)+-1*\sin(\theta)=-\sin(\theta)


\sin^2(\theta)+\cos^2(\theta)=1 \implies \cos^2(\theta)=1-\sin^2(\theta)

Therefore,


\sin(\theta) * \csc(\theta)+\cos((3 \pi)/(2)-\theta)*\sin(\theta)


=\sin(\theta) *(1)/(\sin(\theta))-\sin(\theta)*\sin(\theta)


=1-\sin^2(\theta)


= \cos^2(\theta)

User Mrapacz
by
2.9k points
10 votes
10 votes

Answer:


\sf \cos ^2\left(x\right)

Step-by-step explanation:


\sf \sin \left(x\right)\csc \left(x\right)+\cos \left((3\pi )/(2)-x\right)\sin \left(x\right)


\sf \sin \left(x\right)\csc \left(x\right)+\left(-\sin \left(x\right)\right)\sin \left(x\right)


\sf \sin \left(x\right)\csc \left(x\right)-\sin ^2\left(x\right)


\sf \cos ^2\left(x\right)

User Dhamith Kumara
by
2.9k points