Answer:
here
Explanation:
Let the angle of elevation be \thetaθ
\begin{gathered} \therefore \tan \: \theta = \frac{height \: of \: mast}{height \: of \: shadow} \\ \\ \therefore \tan \: \theta = \frac{44}{14} \\ \\ \therefore \tan \: \theta = 3.14285714 \\ \\ \therefore \: \theta = {\tan}^{ - 1} (3.14285714) \\ \therefore \: \theta = 72.349875765 \degree \\ \\ \huge \red{ \boxed{\therefore \:\theta = 72.35 \degree}}\end{gathered}
∴tanθ=
heightofshadow
heightofmast
∴tanθ=
14
44
∴tanθ=3.14285714
∴θ=tan
−1
(3.14285714)
∴θ=72.349875765°
∴θ=72.35°
Hence, angle of elevation of the sun is 72.35°.