Find where the two curves intersect:
y = 6x - 2x ²
y = x ²
6x - 2x ² = x ² → 3x ² - 6x = 3x (x - 2) = 0 → x = 0 and x = 2
Now, for a shell of radius x units away from the axis of revolution, the height of the shell would be the vertical distance between the upper curve and the lower curve. For 0 ≤ x ≤ 2, we have 6x - x ² ≥ x ², so the height of any given shell is (6x - x ²) - x ² = 6x - 2x ².
Then volume of the solid is