Answer:
Explanation:
hello : given z = (-6-10i)/(4+7i)
the complex conjugate of the denominator is : 4-7i
1. Multiply the numerator and the denominator by the complex conjugate of the denominator: z = (-6-10i)(4-7i)/(4+7i)(4-7i)
use identity : (a + b)(a - b) = a² - b² calculate the product : (4+7i)(4-7i)
(4+7i)(4-7i) = 4² -(7i)² =16 -49i² =16+49 = 65..... ( i² = -1)
2) Simplify the results calculate the numerator : (-6-10i)(4-7i)
(-6-10i)(4-7i) = -24+42i -40i+70i² = -24+42i -40i-70 .....( i² = -1)
(-6-10i)(4-7i) = -94+2i
now : z = (-94+2i )/65 = (-94/65) +(2/65) i
the real part is : ( -94/65) and the imaginary part is : 2/65