138k views
3 votes
Using first principle find derivatives of x2


1 Answer

1 vote

Answer:


\displaystyle f'(x) = 2x

General Formulas and Concepts:

Calculus

Limits

  • Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(x \to c) x = c

Differentiation

  • Derivatives
  • Derivative Notation
  • Definition of a Derivative:
    \displaystyle f'(x) = \lim_(h \to 0) (f(x + h) - f(x))/(h)

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = x^2

Step 2: Differentiate

  1. Substitute in function [Definition of a Derivative]:
    \displaystyle f'(x) = \lim_(h \to 0) ((x + h)^2 - x^2)/(h)
  2. Expand:
    \displaystyle f'(x) = \lim_(h \to 0) (x^2 + 2hx + h^2 - x^2)/(h)
  3. Simplify:
    \displaystyle f'(x) = \lim_(h \to 0) (2hx + h^2)/(h)
  4. Factor:
    \displaystyle f'(x) = \lim_(h \to 0) (h(2x + h))/(h)
  5. Simplify:
    \displaystyle f'(x) = \lim_(h \to 0) 2x + h
  6. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle f'(x) = 2x

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User NotGeek
by
3.6k points