53.1k views
4 votes
Use the distance formula to determine whether ABCD below is a parallelogram. A(-3,2) B(-3,3) C (5,-3) D (-1.-5)

1 Answer

3 votes

Answer:

ABCD is not a parallelogram

Explanation:

Use the distance formula to determine whether ABCD below is a parallelogram. A(-3,2) B(-3,3) C (5,-3) D (-1.-5)

We have to find the length of the sides of the parallelogram using the formula below

= √(x2 - x1)² + (y2 - y1)² when given vertices (x1, y1) and (x2, y2)

For side AB

A(-3,2) B(-3,3)

= √(-3 -(-3))² + (3 -2)²

= √0² + 1²

= √1

= 1 unit

For side BC

B(-3,3) C (5,-3)

= √(5 -(-3))² + (-3 -3)²

= √8² + -6²

= √64 + 36

= √100

= 10 units

For side CD

C (5,-3) D (-1.-5)

= √(-1 - 5)² + (-5 - (-3))²

= √-6² + -2²

= √36 + 4

= √40 units

For sides AD

A(-3,2) D (-1.-5)

= √(-1 - (-3))² + (-5 -2)²

= √(2² + -7²)

= √(4 + 49)

= √53 units

A parallelogram is a quadrilateral with it's opposite sides equal

From the above calculation

Side AB ≠ CD

BC ≠ AD

Therefore, ABCD is not a parallelogram

User Argaen
by
5.2k points