Given:
A figure.
To find:
The value of x.
Solution:
Draw two parallel lines as shown in the below figure.
If a transversal line intersect two parallel lines, then alternate interior angles are same.
(Alternate interior angle)
(Alternate interior angle) ...(i)
The value of angle d is
![d=50-a](https://img.qammunity.org/2022/formulas/mathematics/high-school/3nkluxzwwezd62csnpxfz2mrb44fvytvhk.png)
![d=50-20](https://img.qammunity.org/2022/formulas/mathematics/high-school/48eu38fvsf9ejwe076db7zhzpnteeef6s7.png)
![d=30](https://img.qammunity.org/2022/formulas/mathematics/high-school/1024ub0z3rp8bof5k7ja8kyl3o335p8gbr.png)
Using (i), we get
![b=30](https://img.qammunity.org/2022/formulas/mathematics/high-school/sgwi7l0vmfqhq78bbfx5ejptvgs0wqpj15.png)
If a transversal line intersect two parallel lines, then same sides interior angles are supplementary angles.
![c+140=180](https://img.qammunity.org/2022/formulas/mathematics/high-school/6ld6fgrr3fb9bj6ic2s6qwaib9844ib6e9.png)
![c=180-140](https://img.qammunity.org/2022/formulas/mathematics/high-school/u4ock6bhwh2l8sv8etfmzmz52jthkpu7mx.png)
![c=40](https://img.qammunity.org/2022/formulas/mathematics/high-school/2zqqpemtd9i3pr8s9sw640czihprunldxp.png)
Now,
![x=b+c](https://img.qammunity.org/2022/formulas/mathematics/high-school/sciupts6khcr5a4d1fvu87yoikmzamapo7.png)
![x=30+40](https://img.qammunity.org/2022/formulas/mathematics/high-school/a4kyujyy6cu2icpxstxxynp66o1go4uly6.png)
![x=70](https://img.qammunity.org/2022/formulas/mathematics/college/soxu2xerugmgwwjusmuyf239tx7l2kx054.png)
Therefore, the value of x is 70.