260,192 views
13 votes
13 votes
Given f(x)= 1/1-x and g(x)= x-1/x
find
f of g
g of f^-1
g^-1​

User Nitesh Malviya
by
3.2k points

1 Answer

16 votes
16 votes

Answer:


f(g(x))=x


g(f^(-1)(x))=(-1)/(x-1)


g^(-1)(x)=(1)/(1-x)

Explanation:


f(x)=(1)/(1-x) \ \ \textsf{and} \ \ g(x)=(x-1)/(x)


f(g(x))=(1)/(1-((x-1)/(x)))


\implies f(g(x))=(1)/((x)/(x)-((x-1))/(x))


\implies f(g(x))=(1)/((x-x+1)/(x))


\implies f(g(x))=(1)/((1)/(x))


\implies f(g(x))=x


x=(1)/(1-y)


\implies 1-y=(1)/(x)


\implies y=1-(1)/(x)


\implies f^(-1)(x)=1-(1)/(x)


g(f^(-1)(x))=1-(1)/(1-(1)/(x))


\implies g(f^(-1)(x))=1-(1)/((x-1)/(x))


\implies g(f^(-1)(x))=1-(x)/(x-1)


\implies g(f^(-1)(x))=(x-1-x)/(x-1)


\implies g(f^(-1)(x))=(-1)/(x-1)


x=(y-1)/(y)


\implies xy=y-1


\implies 1=y-xy


\implies 1=y(1-x)


\implies y=(1)/(1-x)


\implies g^(-1)(x)=(1)/(1-x)

User Ywm
by
3.4k points