195k views
1 vote
A population has standard deviation o=17.5.

Part 1 of 2
(a) How large a sample must be drawn so that a 99.9% confidence interval for u will have a margin of error equal to 4.1? Round the answer up to the nearest integer. (Round the critical value to no less than three decimal places.) A sample size of is needed to be drawn in order to obtain a 99.9% confidence interval with a margin of error equal to 4.1.
Part 2 of 2
(b) If the required confidence level were 95%, would the necessary sample size be larger or smaller? (Choose one) V , because the confidence level is (Choose one) V .

1 Answer

3 votes

Answer:

a) A sample of 198 must be drawn.

b) Smaller, because the confidence level is smaller.

Explanation:

Question a:

We have that to find our
\alpha level, that is the subtraction of 1 by the confidence interval divided by 2. So:


\alpha = (1 - 0.999)/(2) = 0.0005

Now, we have to find z in the Ztable as such z has a pvalue of
1 - \alpha.

That is z with a pvalue of
1 - 0.0005 = 0.9995, so Z = 3.291.

Now, find the margin of error M as such


M = z(\sigma)/(√(n))

How large a sample must be drawn so that a 99.9% confidence interval for u will have a margin of error equal to 4.1?

This is n for which M = 4.1. So


M = z(\sigma)/(√(n))


4.1 = 3.291(17.5)/(√(n))


4.1√(n) = 3.291*17.5


√(n) = (3.291*17.5)/(4.1)


(√(n))^2 = ((3.291*17.5)/(4.1))^2


n = 197.3

Rounding up:

A sample of 198 must be drawn.

(b) If the required confidence level were 95%, would the necessary sample size be larger or smaller?

We have that:


M = z(\sigma)/(√(n))

Solving for n


√(n) = (z\sigma)/(M)

That is, n and z are directly proportion, meaning that a higher value of z(higher confidence level) leads to a higher sample size needed.

95% < 99.9%, so a smaller confidence interval.

Smaller, because the confidence level is smaller.

User Tudor Carean
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories