494,606 views
38 votes
38 votes
Find cot and cos
If sec = -3 and sin 0 > 0

Find cot and cos If sec = -3 and sin 0 > 0-example-1
User Crdx
by
2.7k points

1 Answer

24 votes
24 votes

Answer:

Second answer

Explanation:

We are given
\displaystyle \large{\sec \theta = -3} and
\displaystyle \large{\sin \theta > 0}. What we have to find are
\displaystyle \large{\cot \theta} and
\displaystyle \large{\cos \theta}.

First, convert
\displaystyle \large{\sec \theta} to
\displaystyle \large{(1)/(\cos \theta)} via trigonometric identity. That gives us a new equation in form of
\displaystyle \large{\cos \theta}:


\displaystyle \large{(1)/(\cos \theta) = -3}

Multiply
\displaystyle \large{\cos \theta} both sides to get rid of the denominator.


\displaystyle \large{(1)/(\cos \theta) \cdot \cos \theta = -3 \cos \theta}\\\displaystyle \large{1=-3 \cos \theta}

Then divide both sides by -3 to get
\displaystyle \large{\cos \theta}.

Hence,
\displaystyle \large{\boxed{\cos \theta = - (1)/(3)}}

__________________________________________________________

Next, to find
\displaystyle \large{\cot \theta}, convert it to
\displaystyle \large{(1)/(\tan \theta)} via trigonometric identity. Then we have to convert
\displaystyle \large{\tan \theta} to
\displaystyle \large{(\sin \theta)/(\cos \theta)} via another trigonometric identity. That gives us:


\displaystyle \large{(1)/((\sin \theta)/(\cos \theta))}\\\displaystyle \large{(\cos \theta)/(\sin \theta)

It seems that we do not know what
\displaystyle \large{\sin \theta} is but we can find it by using the identity
\displaystyle \large{\sin \theta = √(1-\cos ^2 \theta)} for
\displaystyle \large{\sin \theta > 0}.

From
\displaystyle \large{\cos \theta = -(1)/(3)} then
\displaystyle \large{\cos ^2 \theta = (1)/(9)}.

Therefore:


\displaystyle \large{\sin \theta=\sqrt{1-(1)/(9)}}\\\displaystyle \large{\sin \theta = \sqrt{(9)/(9)-(1)/(9)}}\\\displaystyle \large{\sin \theta = \sqrt{(8)/(9)}}

Then use the surd property to evaluate the square root.

Hence,
\displaystyle \large{\boxed{\sin \theta=(2√(2))/(3)}}

Now that we know what
\displaystyle \large{\sin \theta} is. We can evaluate
\displaystyle \large{(\cos \theta)/(\sin \theta)} which is another form or identity of
\displaystyle \large{\cot \theta}.

From the boxed values of
\displaystyle \large{\cos \theta} and
\displaystyle \large{\sin \theta}:-


\displaystyle \large{\cot \theta = (\cos \theta)/(\sin \theta)}\\\displaystyle \large{\cot \theta = (-(1)/(3))/((2√(2))/(3))}\\\displaystyle \large{\cot \theta=-(1)/(3) \cdot (3)/(2√(2))}\\\displaystyle \large{\cot \theta=-(1)/(2√(2))

Then rationalize the value by multiplying both numerator and denominator with the denominator.


\displaystyle \large{\cot \theta = -(1 \cdot 2√(2))/(2√(2) \cdot 2√(2))}\\\displaystyle \large{\cot \theta = -(2√(2))/(8)}\\\displaystyle \large{\cot \theta = -(√(2))/(4)}

Hence,
\displaystyle \large{\boxed{\cot \theta = -(√(2))/(4)}}

Therefore, the second choice is the answer.

__________________________________________________________

Summary

  • Trigonometric Identity


\displaystyle \large{\sec \theta = (1)/(\cos \theta)}\\ \displaystyle \large{\cot \theta = (1)/(\tan \theta) = (\cos \theta)/(\sin \theta)}\\ \displaystyle \large{\sin \theta = √(1-\cos ^2 \theta) \ \ \ (\sin \theta > 0)}\\ \displaystyle \large{\tan \theta = (\sin \theta)/(\cos \theta)}

  • Surd Property


\displaystyle \large{\sqrt{(x)/(y)} = (√(x))/(√(y))}

Let me know in the comment if you have any questions regarding this question or for clarification! Hope this helps as well.

User Martijn Van Hoof
by
2.8k points