233k views
5 votes
Kamal wrote the augmented matrix below to represent a system of equations.

Which matrix results from the operation -3R2<->R2?

User Sufian
by
3.8k points

2 Answers

4 votes

Answer:

Option A

Explanation:

User Nnythm
by
4.5k points
3 votes

Answer:


\left[\begin{array}{cccc}1&amp;0&amp;1&amp;|-1\\-3&amp;-9&amp;3&amp;|27\\3&amp;2&amp;0&amp;|-2\end{array}\right]

Explanation:

Given [Missing from the question]


\left[\begin{array}{cccc}1&amp;0&amp;1&amp;|-1\\1&amp;3&amp;-1&amp;|-9\\3&amp;2&amp;0&amp;|-2\end{array}\right]

Required


R_2 \to -3R_2

This implies that, we form a new matrix where the second row of the new matrix is a product of -3 and the second row of the previous matrix.

So, we have:


Initial =\left[\begin{array}{cccc}1&amp;0&amp;1&amp;|-1\\1&amp;3&amp;-1&amp;|-9\\3&amp;2&amp;0&amp;|-2\end{array}\right]


New =\left[\begin{array}{cccc}1&amp;0&amp;1&amp;|-1\\-3*1&amp;-3*3&amp;-3*-1&amp;|-3*-9\\3&amp;2&amp;0&amp;|-2\end{array}\right]


New =\left[\begin{array}{cccc}1&amp;0&amp;1&amp;|-1\\-3&amp;-9&amp;3&amp;|27\\3&amp;2&amp;0&amp;|-2\end{array}\right]

User Adam Harrison
by
4.4k points