Answer:
a)
![X=((-15-√(201),(-15+√(201)),(0,\infty)](https://img.qammunity.org/2022/formulas/mathematics/college/6zhhm7wx5vrgpqmui14z6rhl7w74uarhoy.png)
b)
![Y=(\infty,(1)/(2)(-15-√(201) ) ),((1)/(2)()-15+√(201)),0 )](https://img.qammunity.org/2022/formulas/mathematics/college/50emqto3il6jvv611ivbvjzpiewk7n637w.png)
Explanation:
From the question we are told that
The Function
![f(x)=1+(1)/(x) +(5)/(x^2) +(1)/(x^3)](https://img.qammunity.org/2022/formulas/mathematics/college/ryyngyharkq9zrc9gcqsuueyd3blos9kua.png)
Generally the differentiation of function f(x) is mathematically solved as
![f(x)=1+(1)/(x) +(5)/(x^2) +(1)/(x^3)](https://img.qammunity.org/2022/formulas/mathematics/college/ryyngyharkq9zrc9gcqsuueyd3blos9kua.png)
![f(x)=(x^3+x^2+5x+1)/(x^2)](https://img.qammunity.org/2022/formulas/mathematics/college/pbx7mzr6nu32j7m23ztwp0pnow5x5ewb3s.png)
Therefore
![f'(x)=(x^2+10x+3)/(x^4)](https://img.qammunity.org/2022/formulas/mathematics/college/5sreqlqf088ni1x83tsxjhk8bae9kpby1s.png)
Generally critical point is given as
![f'(x)=0](https://img.qammunity.org/2022/formulas/mathematics/college/p217m8nr2ri8t7eztrbjfzazh9x5alqt73.png)
![(x^2+10x+3)/(x^4)=0](https://img.qammunity.org/2022/formulas/mathematics/college/o72rpwn0iodqgk5ai2jotkdbyav5x4o448.png)
![x=-5 \pm√(22)](https://img.qammunity.org/2022/formulas/mathematics/college/dxwzys2aafeeyotiwzknhcep6pufn4u8or.png)
Generally the maximum and minimum x value for critical point is mathematically solved as
![f'(-5 \pm√(22))](https://img.qammunity.org/2022/formulas/mathematics/college/pdbxirhjyrfd9r3sdvk6qra059entelgpj.png)
Where
Maximum value of x
![f'(-5 +√(22))<0](https://img.qammunity.org/2022/formulas/mathematics/college/g02ly3bnke3yc6z2uh8moa2h8n6egge2i9.png)
Minimum value of x
![f'(-5 +√(22))<0](https://img.qammunity.org/2022/formulas/mathematics/college/g02ly3bnke3yc6z2uh8moa2h8n6egge2i9.png)
Therefore interval of increase is mathematically given by
![f'(-5 -√(22)),f'(-5 +√(22))](https://img.qammunity.org/2022/formulas/mathematics/college/imwhek9m9wskkqks5p5z57ste55ot1s4d4.png)
![f(x)<0,-\infty<x<(f'(-5 -√(22))) ,(f'(-5 +√(22)))<x<0,0<x< \infty](https://img.qammunity.org/2022/formulas/mathematics/college/48lwe2kgmvcxsklpb36vq1bo0a0k7byv6x.png)
Therefore interval of decrease is mathematically given by
![(-\infty,-5 -√(22)),f'(-5 +√(22),0),(0,\infty)](https://img.qammunity.org/2022/formulas/mathematics/college/f1ofcyjwwcv02j60yd0ou0e82csy2fsgf5.png)
Generally the second differentiation of function f(x) is mathematically solved as
![f''(x)=(2(x^2+15x+6))/(x^5)](https://img.qammunity.org/2022/formulas/mathematics/college/lk1gcufhx6h0fd9wuzge7e8majhxb7wx2k.png)
Generally the point of inflection is mathematically solved as
![f''(x)=0](https://img.qammunity.org/2022/formulas/mathematics/college/n0zxeuse6ogvi78hbo6u0l8d90k55k6zzw.png)
![x^2+15x+6=0](https://img.qammunity.org/2022/formulas/mathematics/college/agrw52c03s90e50z2p1htni2wr9n0jd27t.png)
Therefore inflection points is given as
![x=(1)/(2) (-15 \pm √(201)](https://img.qammunity.org/2022/formulas/mathematics/college/r20uj8lnsrm2ndg4rd4bjk5ba92dumkg8m.png)
![f''(x)>0,(1)/(2)(-15-√(201)) <x<(1)/(2)(-15-√(201)) <x<0](https://img.qammunity.org/2022/formulas/mathematics/college/ehbfwodphun34a6du8ssnf8tez2qey3ygf.png)
a)Generally the concave upward interval X is mathematically given as
![X=((-15-√(201),(-15+√(201)),(0,\infty)](https://img.qammunity.org/2022/formulas/mathematics/college/6zhhm7wx5vrgpqmui14z6rhl7w74uarhoy.png)
![f''(x)<0,-\infty<x<(1)/(2)(-15-√(201)) , (1)/(2)(-15-√(201)) <x<0](https://img.qammunity.org/2022/formulas/mathematics/college/vs1bersksi0rrzayj6rbxvd37zivr9e8u4.png)
b)Generally the concave downward interval Y is mathematically given as
![Y=(\infty,(1)/(2)(-15-√(201) ) ),((1)/(2)()-15+√(201)),0 )](https://img.qammunity.org/2022/formulas/mathematics/college/50emqto3il6jvv611ivbvjzpiewk7n637w.png)