Final answer:
Using the tangent function with a given distance of 1217 feet and an angle of elevation of 43 degrees, the height of the cloud base is calculated to be approximately 1136 feet to the nearest foot.
Step-by-step explanation:
To find the height of the cloud base given the distance to the spotlight and the angle of elevation, we can use trigonometric functions. Specifically, we will use the tangent function, which relates the angle of elevation to the ratio of the opposite side (height of the cloud base) to the adjacent side (distance from the spotlight).
The formula we use is:
height = distance × tan(angle of elevation)
We are given:
- Distance = 1217 feet
- Angle of elevation = 43 degrees
We will calculate the height as follows:
height = 1217 × tan(43 degrees)
Using a calculator, we find that:
height ≈ 1217 × 0.932515 (tan(43 degrees) ≈ 0.932515)
height ≈ 1135.64 feet
To the nearest foot, the height of the cloud base is approximately 1136 feet.