202k views
5 votes
Y= 2x^3 - 15x^2 + 36x - 20 find turning points and show working out

User Blackfyre
by
6.4k points

1 Answer

2 votes

Given:

The function is:


y=2x^3-15x^2+36x-20

To find:

The turning points.

Solution:

We have,


y=2x^3-15x^2+36x-20

Differentiate the given function with respect to x.


y'=2(3x^2)-15(2x)+36(1)-(0)


y'=6x^2-30x+36


y'=6(x^2-5x+6)

For turning point,
y'=0.


6(x^2-5x+6)=0


x^2-3x-2x+6=0


x(x-3)-2(x-3)=0


(x-3)(x-2)=0

Using zero product property, we get


x-3=0 and
x-2=0


x=3 and
x=2

Therefore, the turning points of the given function are at
x=2 and
x=3.

User Gyorgyabraham
by
6.6k points