44.6k views
1 vote
What is the perimeter of the rectangle whose vertices are at (6, 3), (−6, 3), (−6, −1), and (6, −1)?

1 Answer

2 votes

Given:

The vertices of a rectangle are (6, 3), (−6, 3), (−6, −1), and (6, −1).

To find:

The perimeter of the rectangle.

Solution:

Distance formula:


d=√((x_2-x_1)^2-(y_2-y_1)^2)

Let the vertices of a rectangle are A(6, 3), B(−6, 3), C(−6, −1), and D(6, −1).

Using the distance formula, we get


AB=√((-6-6)^2-(3-3)^2)


AB=√((-12)^2-(0)^2)


AB=√(144)


AB=12

Similarly,


BC=√(\left(-6-\left(-6\right)\right)^2+\left(-1-3\right)^2)=4


CD=√(\left(6-\left(-6\right)\right)^2+\left(-1-\left(-1\right)\right)^2)=12


AD√(\left(6-6\right)^2+\left(-1-3\right)^2)=4

Now, the perimeter of the rectangle is:


Perimeter=AB+BC+CD+AD


Perimeter=12+4+12+4


Perimeter=32

Therefore, the perimeter of the rectangle is 32 units.

User Nikunj Vekariya
by
4.8k points