Solution :
The optimal order quantity, EOQ =
![$\sqrt{\frac{2 * \text{demand}* \text{ordering cost}}{\text{holding cost}}}$](https://img.qammunity.org/2022/formulas/business/college/yhxn153te08f4l9qzbqb3vihp3d3v03i30.png)
EOQ =
![$\sqrt{(2 * 2000 * 12)/(3.6)}$](https://img.qammunity.org/2022/formulas/business/college/jpk4a1a0pgh2fbiho04q5khswp51p3j9bx.png)
= 115.47
The expected number of orders =
![$\frac{\text{demand}}{EOQ}$](https://img.qammunity.org/2022/formulas/business/college/sqd7xg7gk03w8iq84a8pdfgokiddw0gvbi.png)
![$=(2000)/(115.47)$](https://img.qammunity.org/2022/formulas/business/college/lscmgqrim56zk5jltos82c9f2394pc4jca.png)
= 17.32
The daily demand = demand / number of working days
![$=(2000)/(240)$](https://img.qammunity.org/2022/formulas/business/college/qz0daa05xce8cc965rmx1iia7d7fdk87c2.png)
= 8.33
The time between the orders = EOQ / daily demand
![$=(115.47)/(8.33)$](https://img.qammunity.org/2022/formulas/business/college/a778ukqzswnsxuy46enp0ryoggrz2xgr7s.png)
= 13.86 days
ROP = ( Daily demand x lead time ) + safety stock
![$=(8.33 * 8)+10$](https://img.qammunity.org/2022/formulas/business/college/ayxmd4vx2ykjulghm2emefl29uv2giiidg.png)
= 76.64
The annual holding cost =
![$(EOQ)/(2) * \text{holding cost}$](https://img.qammunity.org/2022/formulas/business/college/q16u4baf2zi3epbptmwx43zrx1u1vjxobx.png)
![$=(115.47)/(2) * 3.6$](https://img.qammunity.org/2022/formulas/business/college/z8iblgfxoopay34xffwom5mf7erqata4h5.png)
= 207.85
The annual ordering cost =
![$\frac{\text{demand}}{EOQ} * \text{ordering cost}$](https://img.qammunity.org/2022/formulas/business/college/hfgvz8916ajliaj1ga4tls37lso72rmeyg.png)
![$=(2000)/(115.47) * 12$](https://img.qammunity.org/2022/formulas/business/college/q09l2zfhwx1zbokklgpp80u347mo5q9hjr.png)
= 207.85
So the total inventory cost = annual holding cost + annual ordering cost
= 207.85 + 207.85
= 415.7