Answer:
![4.61* 10^(-5)\ \text{T}](https://img.qammunity.org/2022/formulas/physics/college/a9e73wbim5t9dcsxhbbzy6zapdv2iaskwq.png)
![1.05* 10^(-6)\ \text{Nm}](https://img.qammunity.org/2022/formulas/physics/college/105asmnh8g4jhfeqpkgcykyv8xuv03ioy6.png)
Step-by-step explanation:
= Vacuum permeability =
![4\pi10^(-7)\ \text{H/m}](https://img.qammunity.org/2022/formulas/physics/college/95g1umczdibihkxn0rrjkf3kcjtp56cot8.png)
= Radius of loop = 15 cm
= Current in loop = 11 A
= Radius of coil = 0.76 cm
N = Number of turns of coil = 66
= Current in coil = 1.9 A
Magnetic field is given by
![B=(\mu_0I_l)/(2r_l)\\\Rightarrow B=(4\pi* 10^(-7)* 11)/(2* 0.15)\\\Rightarrow B=4.61* 10^(-5)\ \text{T}](https://img.qammunity.org/2022/formulas/physics/college/ayl9ccwbt3umtagtx5416ihknca7kvu5a5.png)
Magnitude of magnetic field produced by the loop at its center is
.
Torque is given by
![\tau=BI_c\pi r_c^2N\sin90^(\circ)\\\Rightarrow \tau=4.61* 10^(-5)* 1.9* \pi* (0.76* 10^(-2))^2* 66\sin90^(\circ)\\\Rightarrow \tau=1.05* 10^(-6)\ \text{Nm}](https://img.qammunity.org/2022/formulas/physics/college/uonnh72euuju10q41iysvz86gliej36r24.png)
Magnitude of torque on the coil due to the loop is
![1.05* 10^(-6)\ \text{Nm}](https://img.qammunity.org/2022/formulas/physics/college/105asmnh8g4jhfeqpkgcykyv8xuv03ioy6.png)