Given :
- The length of a rectangle is 4 cm greater than its breadth. The perimeter of the rectangle is 32cm.
To Find :
- The Length and width of the rectangle.
Solution :
We know that,
![\qquad{ \bold{ \pmb{2(Length + Width) = Perimeter}}}](https://img.qammunity.org/2023/formulas/mathematics/college/ozjfpp9123gp0jdvviw03esbk760tes3i3.png)
So,
- Let's assume the length of the rectangle as x cm. Then the breadth will become (x – 4) cm.
Now, Substituting the given values in the formula :
![\qquad \dashrightarrow{ \sf{2[x + (x-4)] = 32}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/43uyq3dlyufny6ld0b360yjhdl0ctm0bk6.png)
![\qquad \dashrightarrow{ \sf{2(x + x-4) = 32}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/br86ld3fsmjww8atiz8r087au1qnvqakez.png)
![\qquad \dashrightarrow{ \sf{2(2x-4) = 32}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zrw3qtswxeceq21m77o8esqef3b9rskfto.png)
![\qquad \dashrightarrow{ \sf{4x-8= 32}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tx7nqatfzq5nzn9zqi3qyxrhszy9q3n079.png)
![\qquad \dashrightarrow{ \sf{4x= 32 + 8}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qzvapzmefac1tmj8a6fsgr4rg9a9tjxcub.png)
![\qquad \dashrightarrow{ \sf{4x= 40}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/c9z9p6bggwn9gbae4u1swugx4gz7ajzha6.png)
![\qquad \dashrightarrow{ \sf{x= (40)/(4) }}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rde01j5psi1ydbsuqpeyogdk5gn7qquu5u.png)
![\qquad \dashrightarrow{\pmb{ \bf{x= {10} }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mi0sn7ouy9v4c8tnnffsynkdllqp1yv7y7.png)
Therefore,
- Length = 10 cm
- Width = (10 – 4) = 6 cm