Answer:
Speed = 575 m/s
Mechanical energy is conserved in electrostatic, magnetic and gravitational forces.
Step-by-step explanation:
Given :
Potential difference, U =
![$-3.45 * 10^(-3) \ V$](https://img.qammunity.org/2022/formulas/physics/college/iyq89u68p07bs1e99mapu37mh6yp3dkezd.png)
Mass of the alpha particle,
![$m_(\alpha) = 6.68 * 10^(-27) \ kg$](https://img.qammunity.org/2022/formulas/physics/college/kdjse3p05yp0jviihuf0sz43a5nfy1vbuq.png)
Charge of the alpha particle is,
![$q_(\alpha) = 3.20 * 10^(-19) \ C$](https://img.qammunity.org/2022/formulas/physics/college/tbc5qng1i3dsfy650cty4clmu2yz6kd1t0.png)
So the potential difference for the alpha particle when it is accelerated through the potential difference is
![$U=\Delta Vq_(\alpha)$](https://img.qammunity.org/2022/formulas/physics/college/e1exhjah3sq1fq0eeeog0fs437ux5d7dvc.png)
And the kinetic energy gained by the alpha particle is
![$K.E. =(1)/(2)m_(\alpha)v_(\alpha)^2 $](https://img.qammunity.org/2022/formulas/physics/college/156gptybbpkaa8fdte7p2u42a05ei3tzpr.png)
From the law of conservation of energy, we get
![$K.E. = U$](https://img.qammunity.org/2022/formulas/physics/college/vlqmudd6vs8coz4rxgmp8ryeh1dj6w5vup.png)
![$(1)/(2)m_(\alpha)v_(\alpha)^2 = \Delta V q_(\alpha)$](https://img.qammunity.org/2022/formulas/physics/college/vrqo9hsmt7pjvjml1fw2j8fjasn9o1le5b.png)
![$v_(\alpha) = \sqrt{(2 \Delta V q_(\alpha))/(m_(\alpha))}$](https://img.qammunity.org/2022/formulas/physics/college/1kgrqkusyg8cxy4yxayk8prjv7l0e6tnh1.png)
![$v_(\alpha) = \sqrt{(2(3.45 * 10^(-3 ))(3.2 * 10^(-19)))/(6.68 * 10^(-27))}$](https://img.qammunity.org/2022/formulas/physics/college/q7brz3nbs859ajglbc6l7a97n73duf5m5v.png)
![$v_(\alpha) \approx 575 \ m/s$](https://img.qammunity.org/2022/formulas/physics/college/5rxnvu4q12drymwipqxbxqevzdhjbopzyj.png)
The mechanical energy is conserved in the presence of the following conservative forces :
-- electrostatic forces
-- magnetic forces
-- gravitational forces