Well formatted question is in the picture attached below.
Answer:
(89, 101, 110, 116, 121, 125, 128, 130, 131, 132)
Explanation:
Given the function that models the population of antelopes :
Pn+1 = [1.75(Pn)^2/(Pn-1)] + 32 - Pn
n = 1
P1+1 = [1.75(Pn)^2/(Pn-1)] + 32 - Pn
Initial population, Pn = P1 = 89
P2 = (1.75(89)^2/(89-1)) + 32 - 89 = 100.519 = 101
P3 = (1.75(101)^2/(101-1)) + 32 - 101 = 109.52 = 110
P4 = (1.75(110)^2/(110-1)) + 32 - 110 = 116.27 = 116
P5 = (1.75(116)^2/(116-1)) + 32 - 116 = 120.77 = 121
P6 = (1.75(121)^2/(121-1)) + 32 - 121 = 124.51 = 125
P7 = (1.75(125)^2/(125-1)) + 32 - 125 = 127.51 = 128
P8 = (1.75(128)^2/(128-1)) + 32 - 128 = 129.76 = 130
P9 = (1.75(130)^2/(130-1)) + 32 - 130 = 131.26 = 131
P10 = (1.75(131)^2/(131-1)) + 32 - 131 = 132.01 = 132
(89, 101, 110, 116, 121, 125, 128, 130, 131, 132)