Question:
The velocity function, in feet per second, is given for a particle moving along a straight line.
![1 \le t \le 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/6mz41h5mk7x852fry8o8ia2eg53jrjwue1.png)
Find the displacement
Answer:
The displacement is 42.17ft
Explanation:
Given
![1 \le t \le 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/6mz41h5mk7x852fry8o8ia2eg53jrjwue1.png)
The displacement x, is calculated using:
![x = \int\limits^a_b {v(t)} \, dt](https://img.qammunity.org/2022/formulas/mathematics/high-school/p2vdzc1c3w4ve3ovuobtib1v9di2r5ygzw.png)
![x = \int\limits^(12)_(1) {t^2 - t - 42} \, dt](https://img.qammunity.org/2022/formulas/mathematics/high-school/v023vsrqasxtkbj9zyreix849b3j1u150s.png)
Integrate
![x = (1)/(3)t^3 - (1)/(2)t^2 - 42t|\limits^(12)_(1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/takaabshv7943h9ffhyzuob2iv7ueiiimc.png)
Substitute 12 and 1 for t respectively
![x = ((1)/(3)*12^3 - (1)/(2)*12^2 - 42*12) - ((1)/(3)*1^3 - (1)/(2)*1^2 - 42*1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/alofnufl8zodfwcf89jqd1fvhhirbr082v.png)
![x = (576 - 72 - 504) - ((1)/(3) - (1)/(2) - 42)](https://img.qammunity.org/2022/formulas/mathematics/high-school/45h4njhqcr4ssq1cv0m00ccnfcjh2ctq5q.png)
![x = (0) - (-42.17)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mjpoeztav7nf1erkwye8jb5l4duwg0g1zr.png)
![x = 42.17](https://img.qammunity.org/2022/formulas/mathematics/high-school/rnqemfiv06qxc9rj9dba6m5vzinz7z6h18.png)